

Electronic Journal of Qualitative Theory of Differential Equations

2016, No. **24**, 1–11; doi: 10.14232/ejqtde.2016.1.24 http://www.math.u-szeged.hu/ejqtde/

Existence of solutions for a fourth-order boundary value problem on the half-line via critical point theory

Mabrouk Briki¹, Toufik Moussaoui ¹ and Donal O'Regan²

¹Laboratory of Fixed Point Theory and Applications, École Normale Supérieure, Kouba, Algiers, Algeria
²School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland

> Received 14 December 2015, appeared 2 May 2016 Communicated by Alberto Cabada

Abstract. In this paper, a fourth-order boundary value problem on the half-line is considered and existence of solutions is proved using a minimization principle and the mountain pass theorem.

Keywords: fourth-order BVPs, unbounded interval, critical point, minimization principle, mountain-pass theorem.

2010 Mathematics Subject Classification: 35A15, 35B38.

1 Introduction

We consider the existence of solutions for the following fourth-order boundary value problem set on the half-line

$$\begin{cases} u^{(4)}(t) - u''(t) + u(t) = f(t, u(t)), & t \in [0, +\infty), \\ u(0) = u(+\infty) = 0, \\ u''(0) = u''(+\infty) = 0, \end{cases}$$
(1.1)

where $f \in C([0, +\infty) \times \mathbb{R}, \mathbb{R})$.

Many authors used critical point theory to establish the existence of solutions for fourth-order boundary value problems on bounded intervals (see for example [8,9,13]), but there are only a few papers that consider the above problem on the half-line using critical point theory. We cite [5] where the authors consider the existence of solutions for a particular fourth-order BVP on the half-line using critical point theory.

We endow the following space

$$H_0^2(0,+\infty) = \left\{ u \in L^2(0,+\infty), \ u' \in L^2(0,+\infty), \ u'' \in L^2(0,+\infty), \ u(0) = 0, \ u'(0) = 0 \right\}$$

[™]Corresponding author. Email: moussaoui@ens-kouba.dz

with its natural norm

$$||u|| = \left(\int_0^{+\infty} u''^2(t)dt + \int_0^{+\infty} u'^2(t)dt + \int_0^{+\infty} u^2(t)dt\right)^{\frac{1}{2}}.$$

Note that if $u \in H_0^2(0, +\infty)$, then $u(+\infty) = 0$, $u'(+\infty) = 0$, (see [3, Corollary 8.9]). Let $p, q : [0, +\infty) \longrightarrow (0, +\infty)$ be two continuously differentiable and bounded functions with

$$M_1 = \max(\|p\|_{L^2}, \|p'\|_{L^2}) < +\infty, \qquad M_2 = \max(\|q\|_{L^2}, \|q'\|_{L^2}) < +\infty.$$

We also consider the following spaces

$$C_{l,p}[0,+\infty) = \left\{ u \in C([0,+\infty),\mathbb{R}) : \lim_{t \to +\infty} p(t)u(t) \text{ exists} \right\}$$

endowed with the norm

$$||u||_{\infty,p} = \sup_{t \in [0,+\infty)} p(t)|u(t)|,$$

and

$$C^1_{l,p,q}[0,+\infty) = \left\{ u \in C^1([0,+\infty),\mathbb{R}) : \lim_{t \to +\infty} p(t)u(t), \lim_{t \to +\infty} q(t)u'(t) \text{ exist} \right\}$$

endowed with the natural norm

$$||u||_{\infty,p,q} = \sup_{t \in [0,+\infty)} p(t)|u(t)| + \sup_{t \in [0,+\infty)} q(t)|u'(t)|.$$

Let

$$C_l[0,+\infty) = \left\{ u \in C([0,+\infty),\mathbb{R}) : \lim_{t \to +\infty} u(t) \text{ exists} \right\}$$

endowed with the norm $||u||_{\infty} = \sup_{t \in [0,+\infty)} |u(t)|$.

To prove that $H_0^2(0,+\infty)$ embeds compactly in $C_{l,p,q}^1[0,+\infty)$, we need the following Corduneanu compactness criterion.

Lemma 1.1 ([4]). Let $D \subset C_l([0,+\infty),\mathbb{R})$ be a bounded set. Then D is relatively compact if the following conditions hold:

(a) D is equicontinuous on any compact sub-interval of \mathbb{R}^+ , i.e.

$$\forall J \subset [0, +\infty) \text{ compact}, \ \forall \varepsilon > 0, \ \exists \delta > 0, \ \forall t_1, t_2 \in J : |t_1 - t_2| < \delta \Longrightarrow |u(t_1) - u(t_2)| < \varepsilon, \ \forall u \in D;$$

(b) D is equiconvergent at $+\infty$ i.e.,

$$\forall \varepsilon > 0, \ \exists T = T(\varepsilon) > 0 \text{ such that}$$

 $\forall t : t \ge T(\varepsilon) \Longrightarrow |u(t) - u(+\infty)| \le \varepsilon, \ \forall u \in D.$

Similar reasoning as in [6] yields the following compactness criterion in the space $C^1_{l,v,q}([0,+\infty),\mathbb{R})$.

Lemma 1.2. Let $D \subset C^1_{l,p,q}([0,+\infty),\mathbb{R})$ be a bounded set. Then D is relatively compact if the following conditions hold:

(a) D is equicontinuous on any compact sub-interval of $[0, +\infty)$, i.e.

$$\forall J \subset [0, +\infty) \ compact, \ \forall \varepsilon > 0, \ \exists \delta > 0, \ \forall t_1, t_2 \in J:$$

$$|t_1 - t_2| < \delta \Longrightarrow |p(t_1)u(t_1) - p(t_2)u(t_2)| \le \varepsilon, \ \forall u \in D,$$

$$|t_1 - t_2| < \delta \Longrightarrow |q(t_1)u'(t_1) - q(t_2)u'(t_2)| \le \varepsilon, \ \forall u \in D;$$

(b) D is equiconvergent at $+\infty$ i.e.,

$$\forall \varepsilon > 0, \exists T = T(\varepsilon) > 0 \text{ such that}$$

 $\forall t : t \ge T(\varepsilon) \Longrightarrow |p(t)u(t) - (pu)(+\infty)| \le \varepsilon, \forall u \in D,$
 $\forall t : t \ge T(\varepsilon) \Longrightarrow |q(t)u'(t) - (qu')(+\infty)| \le \varepsilon, \forall u \in D.$

Now we recall some essential facts from critical point theory (see [1,2,10]).

Definition 1.3. Let X be a Banach space, $\Omega \subset X$ an open subset, and $J : \Omega \longrightarrow \mathbb{R}$ a functional. We say that J is Gâteaux differentiable at $u \in \Omega$ if there exists $A \in X^*$ such that

$$\lim_{t\to 0}\frac{J(u+tv)-J(u)}{t}=Av,$$

for all $v \in X$. Now A, which is unique, is denoted by $A = J'_G(u)$.

The mapping which sends to every $u \in \Omega$ the mapping $J'_G(u)$ is called the Gâteaux differential of J and is denoted by J'_G .

We say that $J \in C^1$ if J is Gâteaux differential on Ω and J'_G is continuous at every $u \in \Omega$.

Definition 1.4. Let X be a Banach space. A functional $J: \Omega \longrightarrow \mathbb{R}$ is called coercive if, for every sequence $(u_k)_{k\in\mathbb{N}} \subset X$,

$$||u_k|| \to +\infty \Longrightarrow |I(u_k)| \to +\infty.$$

Definition 1.5. Let X be a Banach space. A functional $J: X \longrightarrow (-\infty, +\infty]$ is said to be sequentially weakly lower semi-continuous (*swlsc* for short) if

$$J(u) \leq \liminf_{n \to +\infty} J(u_n)$$

as $u_n \rightharpoonup u$ in X, $n \rightarrow \infty$.

Lemma 1.6 (Minimization principle [2]). Let X be a reflexive Banach space and J a functional defined on X such that

- (1) $\lim_{\|u\|\to+\infty} J(u) = +\infty$ (coercivity condition),
- (2) I is sequentially weakly lower semi-continuous.

Then I is lower bounded on X and achieves its lower bound at some point u_0 .

Definition 1.7. Let X be a real Banach space, $J \in C^1(X,\mathbb{R})$. If any sequence $(u_n) \subset X$ for which $(J(u_n))$ is bounded in \mathbb{R} and $J'(u_n) \longrightarrow 0$ as $n \to +\infty$ in X' possesses a convergent subsequence, then we say that J satisfies the Palais–Smale condition (PS condition for brevity).

Lemma 1.8 (Mountain Pass Theorem, [11, Theorem 2.2], [12, Theorem 3.1]). Let X be a Banach space, and let $J \in C^1(X,\mathbb{R})$ satisfy J(0) = 0. Assume that J satisfies the (PS) condition and there exist positive numbers ρ and α such that

- (1) $J(u) \ge \alpha \text{ if } ||u|| = \rho$,
- (2) there exists $u_0 \in X$ such that $||u_0|| > \rho$ and $J(u_0) < \alpha$.

Then there exists a critical point. It is characterized by

$$J'(u) = 0$$
, $J(u) = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} J(\gamma(t))$,

where

$$\Gamma = \{ \gamma \in C([0,1], X) : \gamma(0) = 0, \gamma(1) = u_0 \}.$$

1.1 Variational setting

Take $v \in H_0^2(0, +\infty)$, and multiply the equation in Problem (1.1) by v and integrate over $(0, +\infty)$, so we get

$$\int_0^{+\infty} \left(u^{(4)}(t) - u''(t) + u(t) \right) v(t) dt = \int_0^{+\infty} f(t, u(t)) v(t) dt.$$

Hence

$$\int_{0}^{+\infty} (u''(t)v''(t) + u'(t)v'(t) + u(t)v(t))dt = \int_{0}^{+\infty} f(t, u(t))v(t)dt.$$

This leads to the natural concept of a weak solution for Problem (1.1).

Definition 1.9. We say that a function $u \in H_0^2(0, +\infty)$ is a weak solution of Problem (1.1) if

$$\int_0^{+\infty} (u''(t)v''(t) + u'(t)v'(t) + u(t)v(t))dt = \int_0^{+\infty} f(t,u(t))v(t)dt,$$

for all $v \in H_0^2(0, +\infty)$.

In order to study Problem (1.1), we consider the functional $J: H_0^2(0, +\infty) \longrightarrow \mathbb{R}$ defined by

$$J(u) = \frac{1}{2} ||u||^2 - \int_0^{+\infty} F(t, u(t)) dt,$$

where

$$F(t,u) = \int_0^u f(t,s)ds.$$

2 Some embedding results

We begin this section by proving some continuous and compact embeddings. Here p and q (and M_1 , M_2) are as in Section 1.

Lemma 2.1. $H_0^2(0,+\infty)$ embeds continuously in $C_{l,p,q}^1[0,+\infty)$.

Proof. For $u \in H_0^2(0, +\infty)$, we have

$$\begin{split} |p(t)u(t)| &= |p(+\infty)u(+\infty) - p(t)u(t)| \\ &= \left| \int_{t}^{+\infty} (pu)'(s)ds \right| \\ &\leq \left| \int_{t}^{+\infty} p'(s)u(s)ds \right| + \left| \int_{t}^{+\infty} p(s)u'(s)ds \right| \\ &\leq \left(\int_{0}^{+\infty} p'^{2}(s)ds \right)^{\frac{1}{2}} \left(\int_{0}^{+\infty} u^{2}(s)ds \right)^{\frac{1}{2}} + \left(\int_{0}^{+\infty} p^{2}(s)ds \right)^{\frac{1}{2}} \left(\int_{0}^{+\infty} u'^{2}(s)ds \right)^{\frac{1}{2}} \\ &\leq \max(\|p'\|_{L^{2}}, \|p\|_{L^{2}}) \|u\| \\ &\leq M_{1} \|u\|, \end{split}$$

and

$$\begin{aligned} |q(t)u'(t)| &= |q(+\infty)u'(+\infty) - q(t)u'(t)| \\ &= \left| \int_{t}^{+\infty} (qu')'(s)ds \right| \\ &\leq \left| \int_{t}^{+\infty} q'(s)u'(s)ds \right| + \left| \int_{t}^{+\infty} q(s)u''(s)ds \right| \\ &\leq \left(\int_{0}^{+\infty} q'^{2}(s)ds \right)^{\frac{1}{2}} \left(\int_{0}^{+\infty} u'^{2}(s)ds \right)^{\frac{1}{2}} + \left(\int_{0}^{+\infty} q^{2}(s)ds \right)^{\frac{1}{2}} \left(\int_{0}^{+\infty} u''^{2}(s)ds \right)^{\frac{1}{2}} \\ &\leq \max(\|q'\|_{L^{2}}, \|q\|_{L^{2}})\|u\| \\ &\leq M_{2}\|u\|. \end{aligned}$$

Hence $||u||_{\infty,p,q} \leq M||u||$, with $M = \max(M_1, M_2)$.

The following compactness embedding is an important result.

Lemma 2.2. The embedding $H_0^2(0,+\infty) \hookrightarrow C^1_{l,p,q}[0,+\infty)$ is compact.

Proof. Let $D \subset H_0^2(0, +\infty)$ be a bounded set. Then it is bounded in $C_{l,p,q}^1[0, +\infty)$ by Lemma 2.1. Let R > 0 be such that for all $u \in D$, $||u|| \le R$. We will apply Lemma 1.2.

(a) D is equicontinuous on every compact interval of $[0, +\infty)$. Let $u \in D$ and $t_1, t_2 \in J \subset [0, +\infty)$ where J is a compact sub-interval. Using the Cauchy–Schwarz inequality, we have

$$|p(t_{1})u(t_{1}) - p(t_{2})u(t_{2})| = \left| \int_{t_{2}}^{t_{1}} (pu)'(s)ds \right|$$

$$= \left| \int_{t_{2}}^{t_{1}} (p'(s)u(s) + u'(s)p(s)) ds \right|$$

$$\leq \left(\int_{t_{2}}^{t_{1}} p'^{2}(s)ds \right)^{\frac{1}{2}} \left(\int_{t_{2}}^{t_{1}} u^{2}(s)ds \right)^{\frac{1}{2}} + \left(\int_{t_{2}}^{t_{1}} p^{2}(s)ds \right)^{\frac{1}{2}} \left(\int_{t_{2}}^{t_{1}} u'^{2}(s)ds \right)^{\frac{1}{2}}$$

$$\leq \max \left[\left(\int_{t_{2}}^{t_{1}} p'^{2}(s)ds \right)^{\frac{1}{2}}, \left(\int_{t_{2}}^{t_{1}} p^{2}(s)ds \right)^{\frac{1}{2}} \right] ||u||$$

$$\leq R \max \left[\left(\int_{t_{2}}^{t_{1}} p'^{2}(s)ds \right)^{\frac{1}{2}}, \left(\int_{t_{2}}^{t_{1}} p^{2}(s)ds \right)^{\frac{1}{2}} \right] \longrightarrow 0,$$

as $|t_1 - t_2| \rightarrow 0$, and

$$|q(t_{1})u'(t_{1}) - q(t_{2})u'(t_{2})| = \left| \int_{t_{2}}^{t_{1}} (qu')'(s)ds \right|$$

$$= \left| \int_{t_{2}}^{t_{1}} (q'(s)u'(s) + q(s)u''(s)) ds \right|$$

$$\leq \left(\int_{t_{2}}^{t_{1}} q'^{2}(s)ds \right)^{\frac{1}{2}} \left(\int_{t_{2}}^{t_{1}} u''^{2}(s)ds \right)^{\frac{1}{2}}$$

$$+ \left(\int_{t_{2}}^{t_{1}} q^{2}(s)ds \right)^{\frac{1}{2}} \left(\int_{t_{2}}^{t_{1}} u''^{2}(s)ds \right)^{\frac{1}{2}}$$

$$\leq \max \left[\left(\int_{t_{2}}^{t_{1}} q'^{2}(s)ds \right)^{\frac{1}{2}}, \left(\int_{t_{2}}^{t_{1}} q^{2}(s)ds \right)^{\frac{1}{2}} \right] ||u||$$

$$\leq R \max \left[\left(\int_{t_{2}}^{t_{1}} q'^{2}(s)ds \right)^{\frac{1}{2}}, \left(\int_{t_{2}}^{t_{1}} q^{2}(s)ds \right)^{\frac{1}{2}} \right] \longrightarrow 0,$$

as $|t_1 - t_2| \to 0$.

(b) D is equiconvergent at $+\infty$. For $t \in [0, +\infty)$ and $u \in D$, using the fact that $(pu)(+\infty) = 0$, $(qu')(+\infty) = 0$ (note that $u(\infty) = 0$, $u'(\infty) = 0$ and p, q are bounded) and using the Cauchy–Schwarz inequality, we have

$$|(pu)(t) - (pu)(+\infty)| = \left| \int_{t}^{+\infty} (pu)'(s)ds \right|$$

$$= \left| \int_{t}^{+\infty} \left(p'(s)u(s) + u'(s)p(s) \right) ds \right|$$

$$\leq \max \left[\left(\int_{t}^{+\infty} p'^{2}(s)ds \right)^{\frac{1}{2}}, \left(\int_{t}^{+\infty} p^{2}(s)ds \right)^{\frac{1}{2}} \right] ||u||$$

$$\leq R \max \left[\left(\int_{t}^{+\infty} p'^{2}(s)ds \right)^{\frac{1}{2}}, \left(\int_{t}^{+\infty} p^{2}(s)ds \right)^{\frac{1}{2}} \right] \longrightarrow 0,$$

as $t \to +\infty$, and

$$\begin{aligned} |(qu')(t) - (qu')(+\infty)| &= \left| \int_t^{+\infty} (qu')'(s)ds \right| \\ &= \left| \int_t^{+\infty} \left(q'(s)u'(s) + q(s)u''(s) \right) ds \right| \\ &\leq \max \left[\left(\int_t^{+\infty} q'^2(s)ds \right)^{\frac{1}{2}}, \left(\int_t^{+\infty} q^2(s)ds \right)^{\frac{1}{2}} \right] \|u\| \\ &\leq R \max \left[\left(\int_t^{+\infty} q'^2(s)ds \right)^{\frac{1}{2}}, \left(\int_t^{+\infty} q^2(s)ds \right)^{\frac{1}{2}} \right] \longrightarrow 0, \end{aligned}$$

as $t \to +\infty$.

Corollary 2.3. $C^1_{l,p,q}[0,+\infty)$ embeds continuously in $C_{l,p}[0,+\infty)$.

Corollary 2.4. The embedding $H_0^2(0,+\infty) \hookrightarrow C_{l,p}[0,+\infty)$ is continuous and compact.

3 Existence results

Here p (and M_1) are as in Section 1.

Theorem 3.1. Assume that F satisfy the following conditions.

(F1) There exist two constants $1 < \alpha < \beta < 2$ and two functions a, b with $\frac{a}{p^{\alpha}} \in L^1([0, +\infty), [0, +\infty))$, $\frac{b}{p^{\beta}} \in L^1([0, +\infty), [0, +\infty))$ such that

$$|F(t,x)| \le a(t)|x|^{\alpha}$$
, $\forall (t,x) \in [0,+\infty) \times \mathbb{R}$, $|x| \le 1$

and

$$|F(t,x)| \le b(t)|x|^{\beta}, \qquad \forall (t,x) \in [0,+\infty) \times \mathbb{R}, \, |x| > 1.$$

(F2) There exist an open bounded set $I \subset [0, +\infty)$ and two constants $\eta > 0$ and $0 < \gamma < 2$ such that

$$F(t,x) \ge \eta |x|^{\gamma}, \quad \forall (t,x) \in I \times \mathbb{R}, |x| \le 1.$$

Then Problem (1.1) has at least one nontrivial weak solution.

Proof.

Claim 1. We first show that I is well defined.

Let

$$\Omega_1 = \{t \ge 0, |u(t)| \le 1\}, \qquad \Omega_2 = \{t \ge 0, |u(t)| > 1\}.$$

Given $u \in H_0^2(0, +\infty)$, it follows from (*F*1) and Corollary 2.4 that

$$\begin{split} \int_{0}^{+\infty} |F(t, u(t))| dt &= \int_{\Omega_{1}} |F(t, u(t))| dt + \int_{\Omega_{2}} |F(t, u(t))| dt \\ &\leq \int_{\Omega_{1}} a(t) |u(t)|^{\alpha} dt + \int_{\Omega_{2}} b(t) |u(t)|^{\beta} dt \\ &\leq \int_{\Omega_{1}} \frac{a(t)}{p^{\alpha}(t)} |p(t)u(t)|^{\alpha} dt + \int_{\Omega_{2}} \frac{b(t)}{p^{\beta}(t)} |p(t)u(t)|^{\beta} dt \\ &\leq \left| \frac{a}{p^{\alpha}} \right|_{L^{1}} ||u||_{\infty, p}^{\alpha} + \left| \frac{b}{p^{\beta}} \right|_{L^{1}} ||u||_{\infty, p}^{\beta} \\ &\leq M_{1}^{\alpha} \left| \frac{a}{p^{\alpha}} \right|_{L^{1}} ||u||^{\alpha} + M_{1}^{\beta} \left| \frac{b}{p^{\beta}} \right|_{L^{1}} ||u||^{\beta}. \end{split}$$

Thus

$$|J(u)| \leq \frac{1}{2} ||u||^2 + M_1^{\alpha} \left| \frac{a}{p^{\alpha}} \right|_{I^1} ||u||^{\alpha} + M_1^{\beta} \left| \frac{b}{p^{\beta}} \right|_{I^1} ||u||^{\beta} < +\infty.$$

Claim 2. I is coercive.

From (F1) and Corollary 2.4, we have

$$J(u) = \frac{1}{2} \|u\|^2 - \int_{\Omega_1} F(t, u(t)) dt - \int_{\Omega_2} F(t, u(t)) dt$$

$$\geq \frac{1}{2} \|u\|^2 - M_1^{\alpha} \left| \frac{a}{p^{\alpha}} \right|_{L^1} \|u\|^{\alpha} - M_1^{\beta} \left| \frac{b}{p^{\beta}} \right|_{L^1} \|u\|^{\beta}.$$
(3.1)

Now since $0 < \alpha < \beta < 2$, then (3.1) implies that

$$\lim_{\|u\|\to+\infty}J(u)=+\infty.$$

Consequently, *J* is coercive.

Claim 3. J is sequentially weakly lower semi-continuous.

Let (u_n) be a sequence in $H_0^2(0, +\infty)$ such that $u_n \to u$ as $n \to +\infty$ in $H_0^2(0, +\infty)$. Then there exists a constant A > 0 such that $||u_n|| \le A$, for all $n \ge 0$ and $||u|| \le A$. Now (see Corollary 2.4) $(p(t)u_n(t))$ converges to (p(t)u(t)) as $n \to +\infty$ for $t \in [0, +\infty)$. Since F is continuous, we have $F(t, u_n(t)) \to F(t, u(t))$ as $n \to +\infty$, and using (F1) we have

$$|F(t, u_{n}(t))| \leq a(t)|u_{n}(t)|^{\alpha} + b(t)|u_{n}(t)|^{\beta}$$

$$\leq \frac{a(t)}{p^{\alpha}(t)}|p(t)u_{n}(t)|^{\alpha} + \frac{b(t)}{p^{\beta}(t)}|p(t)u_{n}(t)|^{\beta}$$

$$\leq \frac{a(t)}{p^{\alpha}(t)}||u_{n}||_{\infty,p}^{\alpha} + \frac{b(t)}{p^{\beta}(t)}||u_{n}||_{\infty,p}^{\beta}$$

$$\leq \frac{a(t)}{p^{\alpha}(t)}M_{1}^{\alpha}||u_{n}||^{\alpha} + \frac{b(t)}{p^{\beta}(t)}M_{1}^{\beta}||u_{n}||^{\beta}$$

$$\leq \frac{a(t)}{p^{\alpha}(t)}M_{1}^{\alpha}A^{\alpha} + \frac{b(t)}{p^{\beta}(t)}M_{1}^{\beta}A^{\beta},$$

so from the Lebesgue Dominated Convergence Theorem we have

$$\lim_{n\to+\infty}\int_0^{+\infty}F(t,u_n(t))dt=\int_0^{+\infty}F(t,u(t))dt.$$

The norm in the reflexive Banach space is sequentially weakly lower semi-continuous, so

$$\liminf_{n\to+\infty}\|u_n\|\geq\|u\|.$$

Thus one has

$$\lim_{n \to +\infty} \inf J(u_n) = \lim_{n \to +\infty} \inf \left(\frac{1}{2} ||u_n||^2 - \int_0^{+\infty} F(t, u_n(t)) dt \right) \\
\geq \frac{1}{2} ||u||^2 - \int_0^{+\infty} F(t, u(t)) dt = J(u).$$

Then, *J* is sequentially weakly lower semi-continuous.

From Lemma 1.6, J has a minimum point u_0 which is a critical point of J.

Claim 4. We show that $u_0 \neq 0$.

Let $u_1 \in H_0^2(0, +\infty) \setminus \{0\}$ and $|u_1(t)| \le 1$, for all $t \in I$. Then from (F2), we have

$$\begin{split} J(su_1) &= \frac{s^2}{2} \|u_1\|^2 - \int_0^{+\infty} F(t, su_1(t)) dt \\ &\leq \frac{s^2}{2} \|u_1\|^2 - \int_I \eta |su_1(t)|^{\gamma} dt \\ &\leq \frac{s^2}{2} \|u_1\|^2 - s^{\gamma} \eta \int_I |u_1(t)|^{\gamma} dt, \qquad 0 < s < 1. \end{split}$$

Since $0 < \gamma < 2$, it follows that $J(su_1) < 0$ for s > 0 small enough. Hence $J(u_0) < 0$, and therefore u_0 is a nontrivial critical point of J.

Finally, it is easy to see that under (F1), the functional J is Gâteaux differentiable and the Gâteaux derivative at a point $u \in X$ is

$$(J'(u),v) = \int_0^{+\infty} \left(u''(t)v''(t) + u'(t)v'(t) + u(t)v(t) \right) dt - \int_0^{+\infty} f(t,u(t))v(t) dt, \tag{3.2}$$

for all $v \in H_0^2(0, +\infty)$. Therefore u is a weak solution of Problem (1.1).

Theorem 3.2. Assume that f satisfies the following assumptions.

(F3) There exist nonnegative functions φ , g such that $g \in C(\mathbb{R}, [0, +\infty))$ with

$$|f(t,x)| \leq \varphi(t)g(x)$$
, for all $t \in [0,+\infty)$ and all $x \in \mathbb{R}$,

and for any constant R>0 there exists a nonnegative function ψ_R with $\phi\psi_R\in L^1(0,+\infty)$ and

$$\sup \left\{ g\left(\frac{y}{p(t)}\right) : y \in [-R,R] \right\} \le \psi_R(t) \quad \textit{for a.e. } t \ge 0.$$

 $(F4) \qquad \qquad \frac{1}{-1} F(t)$

$$\frac{1}{a(t)}F(t,\frac{1}{p(t)}x) = o(|x|^2) \quad as \ x \longrightarrow 0$$

uniformly in $t \in [0, +\infty)$ for some function $a \in L^1(0, +\infty) \cap C[0, +\infty)$.

(F5) There exists a positive function c_1 and a nonnegative function c_2 with $c_1, c_2 \in L^1(0, \infty)$, and $\mu > 2$ such that

(a)
$$F(t,x) \ge c_1(t)|x|^{\mu} - c_2(t)$$
, for $t \ge 0$, $\forall x \in \mathbb{R} \setminus \{0\}$,

(b)
$$\mu F(t,x) \leq x f(t,x)$$
, for $t \geq 0$, $\forall x \in \mathbb{R}$.

Then Problem (1.1) has at least one nontrivial weak solution.

Proof. We have J(0) = 0.

Claim 1. J satisfies the (PS) condition.

Assume that $(u_n)_{n\in\mathbb{N}}\subset H^2_0(0,+\infty)$ is a sequence such that $(J(u_n))_{n\in\mathbb{N}}$ is bounded and $J'(u_n)\longrightarrow 0$ as $n\longrightarrow +\infty$. Then there exists a constant d>0 such that

$$|J(u_n)| \leq d$$
, $||J'(u_n)||_{E'} \leq d\mu$, $\forall n \in \mathbb{N}$.

From (F5)(b) we have

$$\begin{aligned} 2d + 2d \|u_n\| &\geq 2J(u_n) - \frac{2}{\mu} (J'(u_n), u_n) \\ &\geq \left(1 - \frac{2}{\mu}\right) \|u_n\|^2 + 2\left[\int_0^{+\infty} \left(\frac{1}{\mu} u_n(t) f(t, u_n(t)) - F(t, u_n(t))\right) dt\right] \\ &\geq \left(1 - \frac{2}{\mu}\right) \|u_n\|^2. \end{aligned}$$

Since $\mu > 2$, then $(u_n)_{n \in \mathbb{N}}$ is bounded in $H_0^2(0, +\infty)$.

Now, we show that (u_n) converges strongly to some u in $H_0^2(0, +\infty)$. Since (u_n) is bounded in $H_0^2(0, +\infty)$, there exists a subsequence of (u_n) still denoted by (u_n) such that (u_n) converges weakly to some u in $H_0^2(0, +\infty)$. There exists a constant c > 0 such that $||u_n|| \le c$. Now (see Corollary 2.4) $(p(t)u_n(t))$ converges to p(t)u(t) on $[0, +\infty)$. We have $f(t, u_n(t)) \longrightarrow f(t, u(t))$ and

$$|f(t, u_n(t))| = \left| f(t, \frac{1}{p(t)} p(t) u_n(t)) \right|$$

$$\leq \varphi(t) g\left(\frac{1}{p(t)} p(t) u_n(t) \right)$$

$$\leq \varphi(t) \psi_{cM_1}(t),$$

and using the Lebesgue Dominated Convergence Theorem, we have

$$\lim_{n \to +\infty} \int_0^{+\infty} \left(f(t, u_n(t)) - f(t, u(t)) \right) \left(u_n(t) - u(t) \right) dt = 0.$$
 (3.3)

Since $\lim_{n\to+\infty} J'(u_n) = 0$ and (u_n) converges weakly to some u, we have

$$\lim_{n \to +\infty} \langle J'(u_n) - J'(u), u_n - u \rangle = 0. \tag{3.4}$$

It follows from (3.2) that

$$(J'(u_n) - J'(u), u_n - u) = ||u_n - u||^2 - \int_0^{+\infty} (f(t, u_n(t)) - f(t, u(t)))(u_n(t) - u(t))dt.$$

Hence $\lim_{n\to+\infty} \|u_n - u\| = 0$. Thus (u_n) converges strongly to u in $H_0^2(0,+\infty)$, so J satisfies the (PS) condition.

Claim 2. J satisfies assumption (1) of Lemma 1.8.

Let $0 < \varepsilon < \frac{1}{|a|_{r_1} M_1^2}$. From (F4), there exists $0 < \delta < 1$ such that

$$\left|\frac{1}{a(t)}F(t,\frac{1}{p(t)}x)\right| \le \frac{\varepsilon}{2}|x|^2$$
, for $t \in [0,+\infty)$ and $|x| \le \delta$.

Using Corollary 2.4, we have

$$\int_{0}^{+\infty} |F(t, u(t))dt| = \int_{0}^{+\infty} \left| F\left(t, \frac{1}{p(t)} p(t) u(t)\right) dt \right|$$

$$\leq \int_{0}^{+\infty} \frac{\varepsilon}{2} |a(t)| p^{2}(t) |u(t)|^{2} dt$$

$$\leq \frac{\varepsilon}{2} M_{1}^{2} |a|_{L^{1}} ||u||^{2},$$

whenever $||u||_{\infty,p} \leq \delta$.

Let $0 < \rho \le \frac{\delta}{M_1}$ and $\alpha = \frac{1}{2}(1 - \varepsilon |a|_{L^1}M_1^2)\rho^2$. Then for $||u|| = \rho$ (note $||u||_{\infty,p} \le \delta$), we have

$$J(u) = \frac{1}{2} ||u||^2 - \int_0^{+\infty} F(t, u(t)) dt$$

$$\geq \frac{1}{2} (1 - \varepsilon |a|_{L^1} M_1^2) ||u||^2 = \alpha,$$

so assumption (1) in Lemma 1.8 is satisfied.

Claim 3. J satisfies assumption (2) of Lemma 1.8.

By (F5)(a) we have for some $v_0 \in H_0^2(0, +\infty)$, $v_0 \neq 0$,

$$J(\xi v_0) = \frac{1}{2} \xi^2 ||v_0||^2 - \int_0^{+\infty} F(t, \xi v_0(t)) dt$$

$$\leq \frac{1}{2} \xi^2 ||v_0||^2 - |\xi|^{\mu} \int_0^{+\infty} c_1(t) |v_0(t)|^{\mu} dt + \int_0^{+\infty} c_2(t) dt.$$

Now since $\mu > 2$, then for $u_0 = \xi v_0$, $J(u_0) \le 0$, as $\xi \to +\infty$, so assumption (2) in Lemma 1.8 is satisfied. From Lemma 1.8, J possesses a critical point which is a nontrivial weak solution of Problem (1.1).

As an example of the above theorem, take $f(t,x) = \frac{5}{2} \exp(-t)|x|^{\frac{1}{2}}x$. To see this take

$$c_1(t) = \exp(-t), \qquad c_2(t) = 0,$$

$$\mu = \frac{5}{2}, \qquad a(t) = \frac{1}{(1+t)^2}, \qquad p(t) = \frac{1}{1+t},$$

$$\varphi(t) = \frac{5}{2}e^{-t}, \qquad g(x) = |x|^{\frac{3}{2}} \quad \text{and} \quad \psi_R(t) = (1+t)^{\frac{3}{2}}R^{\frac{3}{2}}.$$

References

- [1] A. Ambrosetti, G. Prodi, *A primer of nonlinear analysis*, Cambridge University Press, Cambridge, 1995. MR1336591
- [2] M. Badiale, E. Serra, Semilinear elliptic equations for beginners. Existence results via the variational approach, Universitext, Springer, London, 2011. MR2722059; url
- [3] H. Brézis, Functional analysis, Sobolev spaces and partial differential equations, Springer, New York, 2010. MR2759829
- [4] C. Corduneanu, Integral equations and stability of feedback systems, Academic Press, New York, 1973. MR0358245
- [5] R. ENGUIÇA, A. GAVIOLI, L. SANCHEZ, Solutions of second-order and fourth-order ODEs on the half-line, *Nonlinear Anal.* **73**(2010), 2968–2979. MR2678658; url
- [6] O. Frites, T. Moussaoui, D. O'Regan, Existence of solutions for a variational inequality on the half-line, *B. Iran. Math. Soc.*, accepted.
- [7] O. Kavian, Introduction à la théorie des points critiques et applications aux problèmes elliptiques (in French), Springer-Verlag, Paris, 1993. MR1276944
- [8] F. LI, Q. ZHANG, Z. LIANG, Existence and multiplicity of solutions of a kind of fourth-order boundary value problem, *Nonlinear Anal.* **62**(2005), 803–816. MR2153213; url
- [9] X. L. LIU, W. T. LI, Existence and multiplicity of solutions for fourth-order boundary value problems with three parameters, *Math. Comput. Modelling* **46**(2007), 525–534. MR2329456; url
- [10] J. MAWHIN, M. WILLEM, Critical point theory and Hamiltonian systems, Springer-Verlag, New York, 1989. MR982267; url
- [11] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, in: *CBMS Regional Conference Series in Mathematics*, Vol. 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. MR845785; url
- [12] M. Struwe, Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems, Springer-Verlag, Berlin, 1996. MR1411681; url
- [13] Y. Yang, J. Zhang, Existence of infinitely many mountain pass solutions for some fourth-order boundary value problems with a parameter, *Nonlinear Anal.* **71**(2009), 6135–6143. MR2566519; url