Existence of solutions for a fourth-order boundary value problem on the half-line via critical point theory

Mabrouk Briki ${ }^{1}$, Toufik Moussaoui ${ }^{\boxtimes 1}$ and Donal \mathbf{O}^{\prime} Regan 2
${ }^{1}$ Laboratory of Fixed Point Theory and Applications, École Normale Supérieure, Kouba, Algiers, Algeria
${ }^{2}$ School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland

Received 14 December 2015, appeared 2 May 2016
Communicated by Alberto Cabada

Abstract

In this paper, a fourth-order boundary value problem on the half-line is considered and existence of solutions is proved using a minimization principle and the mountain pass theorem.

Keywords: fourth-order BVPs, unbounded interval, critical point, minimization principle, mountain-pass theorem.
2010 Mathematics Subject Classification: 35A15, 35B38.

1 Introduction

We consider the existence of solutions for the following fourth-order boundary value problem set on the half-line

$$
\left\{\begin{array}{l}
u^{(4)}(t)-u^{\prime \prime}(t)+u(t)=f(t, u(t)), \quad t \in[0,+\infty) \tag{1.1}\\
u(0)=u(+\infty)=0 \\
u^{\prime \prime}(0)=u^{\prime \prime}(+\infty)=0
\end{array}\right.
$$

where $f \in C([0,+\infty) \times \mathbb{R}, \mathbb{R})$.
Many authors used critical point theory to establish the existence of solutions for fourthorder boundary value problems on bounded intervals (see for example [$8,9,13]$), but there are only a few papers that consider the above problem on the half-line using critical point theory. We cite [5] where the authors consider the existence of solutions for a particular fourth-order BVP on the half-line using critical point theory.

We endow the following space

$$
H_{0}^{2}(0,+\infty)=\left\{u \in L^{2}(0,+\infty), u^{\prime} \in L^{2}(0,+\infty), u^{\prime \prime} \in L^{2}(0,+\infty), u(0)=0, u^{\prime}(0)=0\right\}
$$

[^0]with its natural norm
$$
\|u\|=\left(\int_{0}^{+\infty} u^{\prime \prime 2}(t) d t+\int_{0}^{+\infty} u^{\prime 2}(t) d t+\int_{0}^{+\infty} u^{2}(t) d t\right)^{\frac{1}{2}} .
$$

Note that if $u \in H_{0}^{2}(0,+\infty)$, then $u(+\infty)=0, u^{\prime}(+\infty)=0$, (see [3, Corollary 8.9]). Let $p, q:[0,+\infty) \longrightarrow(0,+\infty)$ be two continuously differentiable and bounded functions with

$$
M_{1}=\max \left(\|p\|_{L^{2}},\left\|p^{\prime}\right\|_{L^{2}}\right)<+\infty, \quad M_{2}=\max \left(\|q\|_{L^{2}},\left\|q^{\prime}\right\|_{L^{2}}\right)<+\infty .
$$

We also consider the following spaces

$$
C_{l, p}[0,+\infty)=\left\{u \in C([0,+\infty), \mathbb{R}): \lim _{t \rightarrow+\infty} p(t) u(t) \text { exists }\right\}
$$

endowed with the norm

$$
\|u\|_{\infty, p}=\sup _{t \in[0,+\infty)} p(t)|u(t)|,
$$

and

$$
C_{l, p, q}^{1}[0,+\infty)=\left\{u \in C^{1}([0,+\infty), \mathbb{R}): \lim _{t \rightarrow+\infty} p(t) u(t), \lim _{t \rightarrow+\infty} q(t) u^{\prime}(t) \text { exist }\right\}
$$

endowed with the natural norm

$$
\|u\|_{\infty, p, q}=\sup _{t \in[0,+\infty)} p(t)|u(t)|+\sup _{t \in[0,+\infty)} q(t)\left|u^{\prime}(t)\right| .
$$

Let

$$
C_{l}[0,+\infty)=\left\{u \in C([0,+\infty), \mathbb{R}): \lim _{t \rightarrow+\infty} u(t) \text { exists }\right\}
$$

endowed with the norm $\|u\|_{\infty}=\sup _{t \in[0,+\infty)}|u(t)|$.
To prove that $H_{0}^{2}(0,+\infty)$ embeds compactly in $C_{l, p, q}^{1}[0,+\infty)$, we need the following Corduneanu compactness criterion.

Lemma 1.1 ([4]). Let $D \subset C_{l}([0,+\infty), \mathbb{R})$ be a bounded set. Then D is relatively compact if the following conditions hold:
(a) D is equicontinuous on any compact sub-interval of \mathbb{R}^{+}, i.e.

$$
\begin{aligned}
& \forall J \subset[0,+\infty) \text { compact, } \forall \varepsilon>0, \exists \delta>0, \forall t_{1}, t_{2} \in J: \\
& \left|t_{1}-t_{2}\right|<\delta \Longrightarrow\left|u\left(t_{1}\right)-u\left(t_{2}\right)\right| \leq \varepsilon, \forall u \in D ;
\end{aligned}
$$

(b) D is equiconvergent at $+\infty$ i.e.,

$$
\begin{aligned}
& \forall \varepsilon>0, \exists T=T(\varepsilon)>0 \text { such that } \\
& \forall t: t \geq T(\varepsilon) \Longrightarrow|u(t)-u(+\infty)| \leq \varepsilon, \forall u \in D .
\end{aligned}
$$

Similar reasoning as in [6] yields the following compactness criterion in the space $C_{l, p, q}^{1}([0,+\infty), \mathbb{R})$.

Lemma 1.2. Let $D \subset C_{l, p, q}^{1}([0,+\infty), \mathbb{R})$ be a bounded set. Then D is relatively compact if the following conditions hold:
(a) D is equicontinuous on any compact sub-interval of $[0,+\infty)$, i.e.

$$
\begin{aligned}
& \forall J \subset[0,+\infty) \text { compact, } \forall \varepsilon>0, \exists \delta>0, \forall t_{1}, t_{2} \in J: \\
& \left|t_{1}-t_{2}\right|<\delta \Longrightarrow\left|p\left(t_{1}\right) u\left(t_{1}\right)-p\left(t_{2}\right) u\left(t_{2}\right)\right| \leq \varepsilon, \forall u \in D, \\
& \left|t_{1}-t_{2}\right|<\delta \Longrightarrow\left|q\left(t_{1}\right) u^{\prime}\left(t_{1}\right)-q\left(t_{2}\right) u^{\prime}\left(t_{2}\right)\right| \leq \varepsilon, \forall u \in D ;
\end{aligned}
$$

(b) D is equiconvergent at $+\infty$ i.e.,

$$
\begin{aligned}
& \forall \varepsilon>0, \exists T=T(\varepsilon)>0 \text { such that } \\
& \forall t: t \geq T(\varepsilon) \Longrightarrow|p(t) u(t)-(p u)(+\infty)| \leq \varepsilon, \forall u \in D, \\
& \forall t: t \geq T(\varepsilon) \Longrightarrow\left|q(t) u^{\prime}(t)-\left(q u^{\prime}\right)(+\infty)\right| \leq \varepsilon, \forall u \in D .
\end{aligned}
$$

Now we recall some essential facts from critical point theory (see [1,2,10]).
Definition 1.3. Let X be a Banach space, $\Omega \subset X$ an open subset, and $J: \Omega \longrightarrow \mathbb{R}$ a functional. We say that J is Gâteaux differentiable at $u \in \Omega$ if there exists $A \in X^{*}$ such that

$$
\lim _{t \rightarrow 0} \frac{J(u+t v)-J(u)}{t}=A v,
$$

for all $v \in X$. Now A, which is unique, is denoted by $A=J_{G}^{\prime}(u)$.
The mapping which sends to every $u \in \Omega$ the mapping $J_{G}^{\prime}(u)$ is called the Gâteaux differential of J and is denoted by J_{G}^{\prime}.

We say that $J \in C^{1}$ if J is Gâteaux differential on Ω and J_{G}^{\prime} is continuous at every $u \in \Omega$.
Definition 1.4. Let X be a Banach space. A functional $J: \Omega \longrightarrow \mathbb{R}$ is called coercive if, for every sequence $\left(u_{k}\right)_{k \in \mathbb{N}} \subset X$,

$$
\left\|u_{k}\right\| \rightarrow+\infty \Longrightarrow\left|J\left(u_{k}\right)\right| \rightarrow+\infty .
$$

Definition 1.5. Let X be a Banach space. A functional $J: X \longrightarrow(-\infty,+\infty]$ is said to be sequentially weakly lower semi-continuous (swlsc for short) if

$$
J(u) \leq \liminf _{n \rightarrow+\infty} J\left(u_{n}\right)
$$

as $u_{n} \rightharpoonup u$ in $X, n \rightarrow \infty$.
Lemma 1.6 (Minimization principle [2]). Let X be a reflexive Banach space and J a functional defined on X such that
(1) $\lim _{\|u\| \rightarrow+\infty} J(u)=+\infty$ (coercivity condition),
(2) J is sequentially weakly lower semi-continuous.

Then J is lower bounded on X and achieves its lower bound at some point u_{0}.
Definition 1.7. Let X be a real Banach space, $J \in C^{1}(X, \mathbb{R})$. If any sequence $\left(u_{n}\right) \subset X$ for which $\left(J\left(u_{n}\right)\right)$ is bounded in \mathbb{R} and $J^{\prime}\left(u_{n}\right) \longrightarrow 0$ as $n \rightarrow+\infty$ in X^{\prime} possesses a convergent subsequence, then we say that J satisfies the Palais-Smale condition (PS condition for brevity).

Lemma 1.8 (Mountain Pass Theorem, [11, Theorem 2.2], [12, Theorem 3.1]). Let X be a Banach space, and let $J \in C^{1}(X, \mathbb{R})$ satisfy $J(0)=0$. Assume that J satisfies the (PS) condition and there exist positive numbers ρ and α such that
(1) $J(u) \geq \alpha$ if $\|u\|=\rho$,
(2) there exists $u_{0} \in X$ such that $\left\|u_{0}\right\|>\rho$ and $J\left(u_{0}\right)<\alpha$.

Then there exists a critical point. It is characterized by

$$
J^{\prime}(u)=0, \quad J(u)=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} J(\gamma(t)),
$$

where

$$
\Gamma=\left\{\gamma \in C([0,1], X): \gamma(0)=0, \gamma(1)=u_{0}\right\} .
$$

1.1 Variational setting

Take $v \in H_{0}^{2}(0,+\infty)$, and multiply the equation in Problem (1.1) by v and integrate over $(0,+\infty)$, so we get

$$
\int_{0}^{+\infty}\left(u^{(4)}(t)-u^{\prime \prime}(t)+u(t)\right) v(t) d t=\int_{0}^{+\infty} f(t, u(t)) v(t) d t .
$$

Hence

$$
\int_{0}^{+\infty}\left(u^{\prime \prime}(t) v^{\prime \prime}(t)+u^{\prime}(t) v^{\prime}(t)+u(t) v(t)\right) d t=\int_{0}^{+\infty} f(t, u(t)) v(t) d t .
$$

This leads to the natural concept of a weak solution for Problem (1.1).
Definition 1.9. We say that a function $u \in H_{0}^{2}(0,+\infty)$ is a weak solution of Problem (1.1) if

$$
\int_{0}^{+\infty}\left(u^{\prime \prime}(t) v^{\prime \prime}(t)+u^{\prime}(t) v^{\prime}(t)+u(t) v(t)\right) d t=\int_{0}^{+\infty} f(t, u(t)) v(t) d t
$$

for all $v \in H_{0}^{2}(0,+\infty)$.
In order to study Problem (1.1), we consider the functional $J: H_{0}^{2}(0,+\infty) \longrightarrow \mathbb{R}$ defined by

$$
J(u)=\frac{1}{2}\|u\|^{2}-\int_{0}^{+\infty} F(t, u(t)) d t
$$

where

$$
F(t, u)=\int_{0}^{u} f(t, s) d s .
$$

2 Some embedding results

We begin this section by proving some continuous and compact embeddings. Here p and q (and M_{1}, M_{2}) are as in Section 1.

Lemma 2.1. $H_{0}^{2}(0,+\infty)$ embeds continuously in $C_{l, p, q}^{1}[0,+\infty)$.

Proof. For $u \in H_{0}^{2}(0,+\infty)$, we have

$$
\begin{aligned}
|p(t) u(t)| & =|p(+\infty) u(+\infty)-p(t) u(t)| \\
& =\left|\int_{t}^{+\infty}(p u)^{\prime}(s) d s\right| \\
& \leq\left|\int_{t}^{+\infty} p^{\prime}(s) u(s) d s\right|+\left|\int_{t}^{+\infty} p(s) u^{\prime}(s) d s\right| \\
& \leq\left(\int_{0}^{+\infty} p^{\prime 2}(s) d s\right)^{\frac{1}{2}}\left(\int_{0}^{+\infty} u^{2}(s) d s\right)^{\frac{1}{2}}+\left(\int_{0}^{+\infty} p^{2}(s) d s\right)^{\frac{1}{2}}\left(\int_{0}^{+\infty} u^{\prime 2}(s) d s\right)^{\frac{1}{2}} \\
& \leq \max \left(\left\|p^{\prime}\right\|_{L^{2}},\|p\|_{L^{2}}\right)\|u\| \\
& \leq M_{1}\|u\|
\end{aligned}
$$

and

$$
\begin{aligned}
\left|q(t) u^{\prime}(t)\right| & =\left|q(+\infty) u^{\prime}(+\infty)-q(t) u^{\prime}(t)\right| \\
& =\left|\int_{t}^{+\infty}\left(q u^{\prime}\right)^{\prime}(s) d s\right| \\
& \leq\left|\int_{t}^{+\infty} q^{\prime}(s) u^{\prime}(s) d s\right|+\left|\int_{t}^{+\infty} q(s) u^{\prime \prime}(s) d s\right| \\
& \leq\left(\int_{0}^{+\infty} q^{\prime 2}(s) d s\right)^{\frac{1}{2}}\left(\int_{0}^{+\infty} u^{\prime 2}(s) d s\right)^{\frac{1}{2}}+\left(\int_{0}^{+\infty} q^{2}(s) d s\right)^{\frac{1}{2}}\left(\int_{0}^{+\infty} u^{\prime \prime 2}(s) d s\right)^{\frac{1}{2}} \\
& \leq \max \left(\left\|q^{\prime}\right\|_{L^{2}},\|q\|_{L^{2}}\right)\|u\| \\
& \leq M_{2}\|u\| .
\end{aligned}
$$

Hence $\|u\|_{\infty, p, q} \leq M\|u\|$, with $M=\max \left(M_{1}, M_{2}\right)$.
The following compactness embedding is an important result.
Lemma 2.2. The embedding $H_{0}^{2}(0,+\infty) \hookrightarrow C_{l, p, q}^{1}[0,+\infty)$ is compact.
Proof. Let $D \subset H_{0}^{2}(0,+\infty)$ be a bounded set. Then it is bounded in $C_{l, p, q}^{1}[0,+\infty)$ by Lemma 2.1. Let $R>0$ be such that for all $u \in D,\|u\| \leq R$. We will apply Lemma 1.2.
(a) D is equicontinuous on every compact interval of $[0,+\infty)$. Let $u \in D$ and $t_{1}, t_{2} \in J \subset$ $[0,+\infty)$ where J is a compact sub-interval. Using the Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
\left|p\left(t_{1}\right) u\left(t_{1}\right)-p\left(t_{2}\right) u\left(t_{2}\right)\right| & =\left|\int_{t_{2}}^{t_{1}}(p u)^{\prime}(s) d s\right| \\
& =\left|\int_{t_{2}}^{t_{1}}\left(p^{\prime}(s) u(s)+u^{\prime}(s) p(s)\right) d s\right| \\
& \leq\left(\int_{t_{2}}^{t_{1}} p^{\prime 2}(s) d s\right)^{\frac{1}{2}}\left(\int_{t_{2}}^{t_{1}} u^{2}(s) d s\right)^{\frac{1}{2}}+\left(\int_{t_{2}}^{t_{1}} p^{2}(s) d s\right)^{\frac{1}{2}}\left(\int_{t_{2}}^{t_{1}} u^{\prime 2}(s) d s\right)^{\frac{1}{2}} \\
& \leq \max \left[\left(\int_{t_{2}}^{t_{1}} p^{\prime 2}(s) d s\right)^{\frac{1}{2}},\left(\int_{t_{2}}^{t_{1}} p^{2}(s) d s\right)^{\frac{1}{2}}\right]\|u\| \\
& \leq R \max \left[\left(\int_{t_{2}}^{t_{1}} p^{\prime 2}(s) d s\right)^{\frac{1}{2}},\left(\int_{t_{2}}^{t_{1}} p^{2}(s) d s\right)^{\frac{1}{2}}\right] \longrightarrow 0
\end{aligned}
$$

as $\left|t_{1}-t_{2}\right| \rightarrow 0$, and

$$
\begin{aligned}
\left|q\left(t_{1}\right) u^{\prime}\left(t_{1}\right)-q\left(t_{2}\right) u^{\prime}\left(t_{2}\right)\right|= & \left|\int_{t_{2}}^{t_{1}}\left(q u^{\prime}\right)^{\prime}(s) d s\right| \\
= & \left|\int_{t_{2}}^{t_{1}}\left(q^{\prime}(s) u^{\prime}(s)+q(s) u^{\prime \prime}(s)\right) d s\right| \\
\leq & \left(\int_{t_{2}}^{t_{1}} q^{\prime 2}(s) d s\right)^{\frac{1}{2}}\left(\int_{t_{2}}^{t_{1}} u^{\prime 2}(s) d s\right)^{\frac{1}{2}} \\
& +\left(\int_{t_{2}}^{t_{1}} q^{2}(s) d s\right)^{\frac{1}{2}}\left(\int_{t_{2}}^{t_{1}} u^{\prime \prime 2}(s) d s\right)^{\frac{1}{2}} \\
\leq & \max \left[\left(\int_{t_{2}}^{t_{1}} q^{\prime 2}(s) d s\right)^{\frac{1}{2}},\left(\int_{t_{2}}^{t_{1}} q^{2}(s) d s\right)^{\frac{1}{2}}\right]\|u\| \\
\leq & R \max \left[\left(\int_{t_{2}}^{t_{1}} q^{\prime 2}(s) d s\right)^{\frac{1}{2}},\left(\int_{t_{2}}^{t_{1}} q^{2}(s) d s\right)^{\frac{1}{2}}\right] \longrightarrow 0
\end{aligned}
$$

as $\left|t_{1}-t_{2}\right| \rightarrow 0$.
(b) D is equiconvergent at $+\infty$. For $t \in[0,+\infty)$ and $u \in D$, using the fact that $(p u)(+\infty)=$ $0,\left(q u^{\prime}\right)(+\infty)=0$ (note that $u(\infty)=0, u^{\prime}(\infty)=0$ and p, q are bounded) and using the CauchySchwarz inequality, we have

$$
\begin{aligned}
|(p u)(t)-(p u)(+\infty)| & =\left|\int_{t}^{+\infty}(p u)^{\prime}(s) d s\right| \\
& =\left|\int_{t}^{+\infty}\left(p^{\prime}(s) u(s)+u^{\prime}(s) p(s)\right) d s\right| \\
& \leq \max \left[\left(\int_{t}^{+\infty} p^{\prime 2}(s) d s\right)^{\frac{1}{2}},\left(\int_{t}^{+\infty} p^{2}(s) d s\right)^{\frac{1}{2}}\right]\|u\| \\
& \leq R \max \left[\left(\int_{t}^{+\infty} p^{\prime 2}(s) d s\right)^{\frac{1}{2}},\left(\int_{t}^{+\infty} p^{2}(s) d s\right)^{\frac{1}{2}}\right] \longrightarrow 0
\end{aligned}
$$

as $t \rightarrow+\infty$, and

$$
\begin{aligned}
\left|\left(q u^{\prime}\right)(t)-\left(q u^{\prime}\right)(+\infty)\right| & =\left|\int_{t}^{+\infty}\left(q u^{\prime}\right)^{\prime}(s) d s\right| \\
& =\left|\int_{t}^{+\infty}\left(q^{\prime}(s) u^{\prime}(s)+q(s) u^{\prime \prime}(s)\right) d s\right| \\
& \leq \max \left[\left(\int_{t}^{+\infty} q^{\prime 2}(s) d s\right)^{\frac{1}{2}},\left(\int_{t}^{+\infty} q^{2}(s) d s\right)^{\frac{1}{2}}\right]\|u\| \\
& \leq R \max \left[\left(\int_{t}^{+\infty} q^{\prime 2}(s) d s\right)^{\frac{1}{2}},\left(\int_{t}^{+\infty} q^{2}(s) d s\right)^{\frac{1}{2}}\right] \longrightarrow 0,
\end{aligned}
$$

as $t \rightarrow+\infty$.
Corollary 2.3. $C_{l, p, q}^{1}[0,+\infty)$ embeds continuously in $C_{l, p}[0,+\infty)$.
Corollary 2.4. The embedding $H_{0}^{2}(0,+\infty) \hookrightarrow C_{l, p}[0,+\infty)$ is continuous and compact.

3 Existence results

Here p (and M_{1}) are as in Section 1.
Theorem 3.1. Assume that F satisfy the following conditions.
(F1) There exist two constants $1<\alpha<\beta<2$ and two functions a, b with $\frac{a}{p^{\alpha}} \in L^{1}([0,+\infty),[0,+\infty))$, $\frac{b}{p^{\beta}} \in L^{1}([0,+\infty),[0,+\infty))$ such that

$$
|F(t, x)| \leq a(t)|x|^{\alpha}, \quad \forall(t, x) \in[0,+\infty) \times \mathbb{R},|x| \leq 1
$$

and

$$
|F(t, x)| \leq b(t)|x|^{\beta}, \quad \forall(t, x) \in[0,+\infty) \times \mathbb{R},|x|>1
$$

(F2) There exist an open bounded set $I \subset[0,+\infty)$ and two constants $\eta>0$ and $0<\gamma<2$ such that

$$
F(t, x) \geq \eta|x|^{\gamma}, \quad \forall(t, x) \in I \times \mathbb{R},|x| \leq 1
$$

Then Problem (1.1) has at least one nontrivial weak solution.
Proof.
Claim 1. We first show that J is well defined.
Let

$$
\Omega_{1}=\{t \geq 0,|u(t)| \leq 1\}, \quad \Omega_{2}=\{t \geq 0,|u(t)|>1\}
$$

Given $u \in H_{0}^{2}(0,+\infty)$, it follows from (F1) and Corollary 2.4 that

$$
\begin{aligned}
\int_{0}^{+\infty}|F(t, u(t))| d t & =\int_{\Omega_{1}}|F(t, u(t))| d t+\int_{\Omega_{2}}|F(t, u(t))| d t \\
& \leq \int_{\Omega_{1}} a(t)|u(t)|^{\alpha} d t+\int_{\Omega_{2}} b(t)|u(t)|^{\beta} d t \\
& \leq \int_{\Omega_{1}} \frac{a(t)}{p^{\alpha}(t)}|p(t) u(t)|^{\alpha} d t+\int_{\Omega_{2}} \frac{b(t)}{p^{\beta}(t)}|p(t) u(t)|^{\beta} d t \\
& \leq\left|\frac{a}{p^{\alpha}}\right|_{L^{1}}\|u\|_{\infty, p}^{\alpha}+\left|\frac{b}{p^{\beta}}\right|_{L^{1}}\|u\|_{\infty, p}^{\beta} \\
& \leq M_{1}^{\alpha}\left|\frac{a}{p^{\alpha}}\right|_{L^{1}}\|u\|^{\alpha}+M_{1}^{\beta}\left|\frac{b}{p^{\beta}}\right|_{L^{1}}\|u\|^{\beta}
\end{aligned}
$$

Thus

$$
|J(u)| \leq \frac{1}{2}\|u\|^{2}+M_{1}^{\alpha}\left|\frac{a}{p^{\alpha}}\right|_{L^{1}}\|u\|^{\alpha}+M_{1}^{\beta}\left|\frac{b}{p^{\beta}}\right|_{L^{1}}\|u\|^{\beta}<+\infty
$$

Claim 2. J is coercive.
From (F1) and Corollary 2.4, we have

$$
\begin{align*}
J(u) & =\frac{1}{2}\|u\|^{2}-\int_{\Omega_{1}} F(t, u(t)) d t-\int_{\Omega_{2}} F(t, u(t)) d t \\
& \geq \frac{1}{2}\|u\|^{2}-M_{1}^{\alpha}\left|\frac{a}{p^{\alpha}}\right|_{L^{1}}\|u\|^{\alpha}-M_{1}^{\beta}\left|\frac{b}{p^{\beta}}\right|_{L^{1}}\|u\|^{\beta} . \tag{3.1}
\end{align*}
$$

Now since $0<\alpha<\beta<2$, then (3.1) implies that

$$
\lim _{\|u\| \rightarrow+\infty} J(u)=+\infty
$$

Consequently, J is coercive.
Claim 3. J is sequentially weakly lower semi-continuous.
Let $\left(u_{n}\right)$ be a sequence in $H_{0}^{2}(0,+\infty)$ such that $u_{n} \rightharpoonup u$ as $n \longrightarrow+\infty$ in $H_{0}^{2}(0,+\infty)$. Then there exists a constant $A>0$ such that $\left\|u_{n}\right\| \leq A$, for all $n \geq 0$ and $\|u\| \leq A$. Now (see Corollary 2.4) $\left(p(t) u_{n}(t)\right)$ converges to $(p(t) u(t))$ as $n \longrightarrow+\infty$ for $t \in[0,+\infty)$. Since F is continuous, we have $F\left(t, u_{n}(t)\right) \longrightarrow F(t, u(t))$ as $n \longrightarrow+\infty$, and using (F1) we have

$$
\begin{aligned}
\left|F\left(t, u_{n}(t)\right)\right| & \leq a(t)\left|u_{n}(t)\right|^{\alpha}+b(t)\left|u_{n}(t)\right|^{\beta} \\
& \leq \frac{a(t)}{p^{\alpha}(t)}\left|p(t) u_{n}(t)\right|^{\alpha}+\frac{b(t)}{p^{\beta}(t)}\left|p(t) u_{n}(t)\right|^{\beta} \\
& \leq \frac{a(t)}{p^{\alpha}(t)}\left\|u_{n}\right\|_{\infty, p}^{\alpha}+\frac{b(t)}{p^{\beta}(t)}\left\|u_{n}\right\|_{\infty, p}^{\beta} \\
& \leq \frac{a(t)}{p^{\alpha}(t)} M_{1}^{\alpha}\left\|u_{n}\right\|^{\alpha}+\frac{b(t)}{p^{\beta}(t)} M_{1}^{\beta}\left\|u_{n}\right\|^{\beta} \\
& \leq \frac{a(t)}{p^{\alpha}(t)} M_{1}^{\alpha} A^{\alpha}+\frac{b(t)}{p^{\beta}(t)} M_{1}^{\beta} A^{\beta}
\end{aligned}
$$

so from the Lebesgue Dominated Convergence Theorem we have

$$
\lim _{n \rightarrow+\infty} \int_{0}^{+\infty} F\left(t, u_{n}(t)\right) d t=\int_{0}^{+\infty} F(t, u(t)) d t
$$

The norm in the reflexive Banach space is sequentially weakly lower semi-continuous, so

$$
\liminf _{n \rightarrow+\infty}\left\|u_{n}\right\| \geq\|u\|
$$

Thus one has

$$
\begin{aligned}
\liminf _{n \rightarrow+\infty} J\left(u_{n}\right) & =\liminf _{n \rightarrow+\infty}\left(\frac{1}{2}\left\|u_{n}\right\|^{2}-\int_{0}^{+\infty} F\left(t, u_{n}(t)\right) d t\right) \\
& \geq \frac{1}{2}\|u\|^{2}-\int_{0}^{+\infty} F(t, u(t)) d t=J(u) .
\end{aligned}
$$

Then, J is sequentially weakly lower semi-continuous.
From Lemma 1.6, J has a minimum point u_{0} which is a critical point of J.
Claim 4. We show that $u_{0} \neq 0$.
Let $u_{1} \in H_{0}^{2}(0,+\infty) \backslash\{0\}$ and $\left|u_{1}(t)\right| \leq 1$, for all $t \in I$. Then from (F2), we have

$$
\begin{aligned}
J\left(s u_{1}\right) & =\frac{s^{2}}{2}\left\|u_{1}\right\|^{2}-\int_{0}^{+\infty} F\left(t, s u_{1}(t)\right) d t \\
& \leq \frac{s^{2}}{2}\left\|u_{1}\right\|^{2}-\int_{I} \eta\left|s u_{1}(t)\right|^{\gamma} d t \\
& \leq \frac{s^{2}}{2}\left\|u_{1}\right\|^{2}-s^{\gamma} \eta \int_{I}\left|u_{1}(t)\right|^{\gamma} d t, \quad 0<s<1 .
\end{aligned}
$$

Since $0<\gamma<2$, it follows that $J\left(s u_{1}\right)<0$ for $s>0$ small enough. Hence $J\left(u_{0}\right)<0$, and therefore u_{0} is a nontrivial critical point of J.

Finally, it is easy to see that under (F1), the functional J is Gâteaux differentiable and the Gâteaux derivative at a point $u \in X$ is

$$
\begin{equation*}
\left(J^{\prime}(u), v\right)=\int_{0}^{+\infty}\left(u^{\prime \prime}(t) v^{\prime \prime}(t)+u^{\prime}(t) v^{\prime}(t)+u(t) v(t)\right) d t-\int_{0}^{+\infty} f(t, u(t)) v(t) d t \tag{3.2}
\end{equation*}
$$

for all $v \in H_{0}^{2}(0,+\infty)$. Therefore u is a weak solution of Problem (1.1).
Theorem 3.2. Assume that f satisfies the following assumptions.
(F3) There exist nonnegative functions φ, g such that $g \in C(\mathbb{R},[0,+\infty))$ with

$$
|f(t, x)| \leq \varphi(t) g(x), \text { for all } t \in[0,+\infty) \text { and all } x \in \mathbb{R}
$$

and for any constant $R>0$ there exists a nonnegative function ψ_{R} with $\varphi \psi_{R} \in L^{1}(0,+\infty)$ and

$$
\sup \left\{g\left(\frac{y}{p(t)}\right): y \in[-R, R]\right\} \leq \psi_{R}(t) \quad \text { for a.e. } t \geq 0
$$

(F4)

$$
\frac{1}{a(t)} F\left(t, \frac{1}{p(t)} x\right)=o\left(|x|^{2}\right) \quad \text { as } x \longrightarrow 0
$$

uniformly in $t \in[0,+\infty)$ for some function $a \in L^{1}(0,+\infty) \cap C[0,+\infty)$.
(F5) There exists a positive function c_{1} and a nonnegative function c_{2} with $c_{1}, c_{2} \in L^{1}(0, \infty)$, and $\mu>2$ such that

$$
\begin{aligned}
& \text { (a) } F(t, x) \geq c_{1}(t)|x|^{\mu}-c_{2}(t), \text { for } t \geq 0, \forall x \in \mathbb{R} \backslash\{0\} \text {, } \\
& \text { (b) } \mu F(t, x) \leq x f(t, x), \text { for } t \geq 0, \forall x \in \mathbb{R} \text {. }
\end{aligned}
$$

Then Problem (1.1) has at least one nontrivial weak solution.
Proof. We have $J(0)=0$.
Claim 1. J satisfies the (PS) condition.
Assume that $\left(u_{n}\right)_{n \in \mathbb{N}} \subset H_{0}^{2}(0,+\infty)$ is a sequence such that $\left(J\left(u_{n}\right)\right)_{n \in \mathbb{N}}$ is bounded and $J^{\prime}\left(u_{n}\right) \longrightarrow 0$ as $n \longrightarrow+\infty$. Then there exists a constant $d>0$ such that

$$
\left|J\left(u_{n}\right)\right| \leq d, \quad\left\|J^{\prime}\left(u_{n}\right)\right\|_{E^{\prime}} \leq d \mu, \quad \forall n \in \mathbb{N} .
$$

From (F5)(b) we have

$$
\begin{aligned}
2 d+2 d\left\|u_{n}\right\| & \geq 2 J\left(u_{n}\right)-\frac{2}{\mu}\left(J^{\prime}\left(u_{n}\right), u_{n}\right) \\
& \geq\left(1-\frac{2}{\mu}\right)\left\|u_{n}\right\|^{2}+2\left[\int_{0}^{+\infty}\left(\frac{1}{\mu} u_{n}(t) f\left(t, u_{n}(t)\right)-F\left(t, u_{n}(t)\right)\right) d t\right] \\
& \geq\left(1-\frac{2}{\mu}\right)\left\|u_{n}\right\|^{2} .
\end{aligned}
$$

Since $\mu>2$, then $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $H_{0}^{2}(0,+\infty)$.
Now, we show that $\left(u_{n}\right)$ converges strongly to some u in $H_{0}^{2}(0,+\infty)$. Since $\left(u_{n}\right)$ is bounded in $H_{0}^{2}(0,+\infty)$, there exists a subsequence of $\left(u_{n}\right)$ still denoted by $\left(u_{n}\right)$ such that $\left(u_{n}\right)$ converges weakly to some u in $H_{0}^{2}(0,+\infty)$. There exists a constant $c>0$ such that $\left\|u_{n}\right\| \leq c$. Now (see Corollary 2.4) $\left(p(t) u_{n}(t)\right)$ converges to $p(t) u(t)$ on $[0,+\infty)$. We have $f\left(t, u_{n}(t)\right) \longrightarrow f(t, u(t))$ and

$$
\begin{aligned}
\left|f\left(t, u_{n}(t)\right)\right| & =\left|f\left(t, \frac{1}{p(t)} p(t) u_{n}(t)\right)\right| \\
& \leq \varphi(t) g\left(\frac{1}{p(t)} p(t) u_{n}(t)\right) \\
& \leq \varphi(t) \psi_{c M_{1}}(t),
\end{aligned}
$$

and using the Lebesgue Dominated Convergence Theorem, we have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{0}^{+\infty}\left(f\left(t, u_{n}(t)\right)-f(t, u(t))\right)\left(u_{n}(t)-u(t)\right) d t=0 \tag{3.3}
\end{equation*}
$$

Since $\lim _{n \rightarrow+\infty} J^{\prime}\left(u_{n}\right)=0$ and $\left(u_{n}\right)$ converges weakly to some u, we have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\langle J^{\prime}\left(u_{n}\right)-J^{\prime}(u), u_{n}-u\right\rangle=0 \tag{3.4}
\end{equation*}
$$

It follows from (3.2) that

$$
\left(J^{\prime}\left(u_{n}\right)-J^{\prime}(u), u_{n}-u\right)=\left\|u_{n}-u\right\|^{2}-\int_{0}^{+\infty}\left(f\left(t, u_{n}(t)\right)-f(t, u(t))\right)\left(u_{n}(t)-u(t)\right) d t .
$$

Hence $\lim _{n \rightarrow+\infty}\left\|u_{n}-u\right\|=0$. Thus $\left(u_{n}\right)$ converges strongly to u in $H_{0}^{2}(0,+\infty)$, so J satisfies the (PS) condition.

Claim 2. J satisfies assumption (1) of Lemma 1.8.
Let $0<\varepsilon<\frac{1}{|a|_{L^{1}} M_{1}^{2}}$. From (F4), there exists $0<\delta<1$ such that

$$
\left|\frac{1}{a(t)} F\left(t, \frac{1}{p(t)} x\right)\right| \leq \frac{\varepsilon}{2}|x|^{2}, \quad \text { for } t \in[0,+\infty) \text { and }|x| \leq \delta .
$$

Using Corollary 2.4, we have

$$
\begin{aligned}
\int_{0}^{+\infty}|F(t, u(t)) d t| & =\int_{0}^{+\infty}\left|F\left(t, \frac{1}{p(t)} p(t) u(t)\right) d t\right| \\
& \leq \int_{0}^{+\infty} \frac{\varepsilon}{2}|a(t)| p^{2}(t)|u(t)|^{2} d t \\
& \leq \frac{\varepsilon}{2} M_{1}^{2}|a|_{L^{1}}\|u\|^{2},
\end{aligned}
$$

whenever $\|u\|_{\infty, p} \leq \delta$.
Let $0<\rho \leq \frac{\delta}{M_{1}}$ and $\alpha=\frac{1}{2}\left(1-\varepsilon|a|_{L^{1}} M_{1}^{2}\right) \rho^{2}$. Then for $\|u\|=\rho$ (note $\|u\|_{\infty, p} \leq \delta$), we have

$$
\begin{aligned}
J(u) & =\frac{1}{2}\|u\|^{2}-\int_{0}^{+\infty} F(t, u(t)) d t \\
& \geq \frac{1}{2}\left(1-\varepsilon|a|_{L^{1}} M_{1}^{2}\right)\|u\|^{2}=\alpha,
\end{aligned}
$$

so assumption (1) in Lemma 1.8 is satisfied.
Claim 3. J satisfies assumption (2) of Lemma 1.8.
By $(F 5)(a)$ we have for some $v_{0} \in H_{0}^{2}(0,+\infty), v_{0} \neq 0$,

$$
\begin{aligned}
J\left(\xi v_{0}\right) & =\frac{1}{2} \tilde{\zeta}^{2}\left\|v_{0}\right\|^{2}-\int_{0}^{+\infty} F\left(t, \tilde{\xi} v_{0}(t)\right) d t \\
& \leq \frac{1}{2} \tilde{\xi}^{2}\left\|v_{0}\right\|^{2}-|\xi|^{u} \int_{0}^{+\infty} c_{1}(t)\left|v_{0}(t)\right|^{u} d t+\int_{0}^{+\infty} c_{2}(t) d t .
\end{aligned}
$$

Now since $\mu>2$, then for $u_{0}=\xi v_{0}, J\left(u_{0}\right) \leq 0$, as $\xi \rightarrow+\infty$, so assumption (2) in Lemma 1.8 is satisfied. From Lemma 1.8, J possesses a critical point which is a nontrivial weak solution of Problem (1.1).

As an example of the above theorem, take $f(t, x)=\frac{5}{2} \exp (-t)|x|^{\frac{1}{2}} x$. To see this take

$$
\begin{gathered}
c_{1}(t)=\exp (-t), \quad c_{2}(t)=0, \\
\mu=\frac{5}{2}, \quad a(t)=\frac{1}{(1+t)^{2}}, \quad p(t)=\frac{1}{1+t^{\prime}}, \\
\varphi(t)=\frac{5}{2} e^{-t}, \quad g(x)=|x|^{\frac{3}{2}} \quad \text { and } \quad \psi_{R}(t)=(1+t)^{\frac{3}{2}} R^{\frac{3}{2}} .
\end{gathered}
$$

References

[1] A. Ambrosetti, G. Prodi, A primer of nonlinear analysis, Cambridge University Press, Cambridge, 1995. MR1336591
[2] M. Badiale, E. Serra, Semilinear elliptic equations for beginners. Existence results via the variational approach, Universitext, Springer, London, 2011. MR2722059; url
[3] H. Brézis, Functional analysis, Sobolev spaces and partial differential equations, Springer, New York, 2010. MR2759829
[4] C. Corduneanu, Integral equations and stability of feedback systems, Academic Press, New York, 1973. MR0358245
[5] R. Enguiça, A. Gavioli, L. Sanchez, Solutions of second-order and fourth-order ODEs on the half-line, Nonlinear Anal. 73(2010), 2968-2979. MR2678658; url
[6] O. Frites, T. Moussaoui, D. O'Regan, Existence of solutions for a variational inequality on the half-line, B. Iran. Math. Soc., accepted.
[7] O. Kavian, Introduction à la théorie des points critiques et applications aux problèmes elliptiques (in French), Springer-Verlag, Paris, 1993. MR1276944
[8] F. Li, Q. Zhang, Z. Liang, Existence and multiplicity of solutions of a kind of fourthorder boundary value problem, Nonlinear Anal. 62(2005), 803-816. MR2153213; url
[9] X. L. Liu, W. T. Li, Existence and multiplicity of solutions for fourth-order boundary value problems with three parameters, Math. Comput. Modelling 46(2007), 525-534. MR2329456; url
[10] J. Mawhin, M. Willem, Critical point theory and Hamiltonian systems, Springer-Verlag, New York, 1989. MR982267; url
[11] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, in: CBMS Regional Conference Series in Mathematics, Vol. 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. MR845785; url
[12] M. Struwe, Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems, Springer-Verlag, Berlin, 1996. MR1411681; url
[13] Y. Yang, J. Zhang, Existence of infinitely many mountain pass solutions for some fourthorder boundary value problems with a parameter, Nonlinear Anal. 71(2009), 6135-6143. MR2566519; url

[^0]: ${ }^{\boxtimes}$ Corresponding author. Email: moussaoui@ens-kouba.dz

